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Abstract: Antimicrobial resistance poses a signifi-
cant threat to global health, demanding innovative 
and scalable responses. This article examines the in-
tegration of artificial intelligence/machine learning 
technologies into the surveillance and clinical man-
agement of antimicrobial resistance, highlighting 
recent advancements and their potential to trans-
form the field. By aligning these technologies with 
national strategies and clinical practice, particular-
ly in settings such as Serbia, the paper underscores 
the importance of interdisciplinary collaboration 
in developing effective decision-support tool for 
empirical antibiotic therapy tailored to real-world 
healthcare environments revived in the project idea, 
Machine Learning Utilization for Data-Driven Em-
pirical Therapy and Antimicrobial Resistance Man-
agement, developed by a group of researchers from 
four Serbian faculties. 
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1. Introduction

Antimicrobial resistance (AMR) is a natural evolution-
ary mechanism by which microorganisms, including 
bacteria, viruses, fungi, and parasites, develop the 
capacity to resist the action of antimicrobial drugs. 
Nevertheless, the widespread misuse and overuse of 
antibiotics across human medicine, veterinary prac-
tices, agriculture, and environmental settings have 
greatly intensified the pace at which AMR emerges 
and spreads (World Health Organization, 2023). An-
timicrobial resistance is no longer a distant or hypo-
thetical concern; it is already having a significant effect 

on public health (The Lancet, 2024). In 2021, there 
were 4.71 million deaths associated with bacterial 
AMR globally, including 1.14 million deaths directly 
attributable to bacterial AMR (Naghavi et al. 2024). 
According to European Centre for Disease Prevention 
and Control (ECDC) data, the number of deaths at-
tributable to bacterial AMR in the European Union/
European Economic Area (EU/EEA) in 2020 was over 
35,000 (European Centre for Disease Prevention and 
Control, 2022). Projections suggest that, if current 
trends continue, AMR could lead to 1.91 million direct 
deaths and 8.22 million associated deaths globally by 
2050, underscoring the urgent need for coordinated 
global action (Naghavi et al. 2024). Antibiotic resis-
tance contributes to a significant rise in healthcare 
costs due to the need for more expensive second- or 
third-line antimicrobial agents, extended durations of 
hospitalization, use of advanced medical equipment, 
and implementation of strict infection control and 
isolation protocols (Prestinaci et al. 2015). 

The growing complexity of AMR challenges con-
ventional epidemiological and clinical tools, exceeding 
the capacity of standard analytical methods. As a re-
sponse, in recent years, there has been increasing glob-
al momentum to apply advanced information tech-
nologies, particularly artificial intelligence (AI) and 
machine learning (ML), as a scalable and data-driven 
solution to the evolving threat of antimicrobial re-
sistance (de la Lastra et al. 2024). By leveraging this 
potential, ML-based solutions are bridging the gap 
between raw clinical data and timely, evidence-based 
antimicrobial decision-making, improving both mi-
crobiological analysis and empirical antibiotic pre-
scribing, and in general, enabling healthcare systems 
to move from reactive to proactive, predictive, and 
personalized responses. 
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Serbia’s national strategy for the development of 
artificial intelligence (Republic of Serbia Goverment, 
2025) explicitly recognizes the need to apply AI in 
healthcare, particularly to improve the quality of care 
and the efficiency of public health interventions. This 
is the foundation of the ML-ETAR project idea pro-
posed by the team of researchers from the Faculty of 
Mechanical and Civil Engineering in Kraljevo, Uni-
versity of Kragujevac, the Faculty of Medicine, Uni-
versity of Belgrade, the Faculty of Medical Sciences, 
University of Kragujevac, and the Faculty of Tech-
nical Sciences, University of Priština, which aims to 
develop a robust and context-sensitive antimicrobial 
decision-support tool using retrospective data from 
healthcare institutions in Serbia. By combining lo-
cal clinical knowledge with advanced computational 
techniques, the project exemplifies how AI can be 
responsibly and effectively integrated into national 
AMR strategies.

2. Current artificial intelligence applications 
and future prospects in combating AMR

AI, as defined by Stuart Russell and Peter Norvig, lead-
ing theorists in artificial intelligence, is “the study of 
agents that receive percepts from the environment and 
perform actions” (Russell & Norvig, 2021). In practi-
cal terms, AI refers to systems capable of simulating 
aspects of human intelligence—such as learning, rea-
soning, and decision-making, in order to solve com-
plex problems. A core subfield of AI - ML focuses on 
designing algorithms that can learn from historical 
data and improve their performance over time without 
being explicitly programmed for each scenario.

ML algorithms are particularly suited to domains 
where large volumes of complex and heterogeneous 
data are generated. Microbiology, in particular, pro-
duces extensive datasets through routine laboratory 
testing, microbial culturing, antibiotic susceptibili-
ty profiling, molecular diagnostics, and sequencing 
techniques—all of which contain rich, structured and 
unstructured information suitable for computational 
analysis. As noted by LeCun, Bengio, and Hinton—
founding figures of modern deep learning, machine 
learning enables systems to “automatically learn com-
plex representations of data and perform tasks with 
human-level accuracy or beyond” (LeCun, Bengio & 
Hinton, 2015). This capability has opened the door to 
transformative applications in healthcare, including 
microbiology, where such systems can detect subtle 
patterns across large, heterogeneous datasets and sup-
port high-stakes clinical decisions.

In healthcare, ML has already been applied to 
diagnostic classification, risk prediction, treatment 
selection, and outbreak surveillance. Importantly, 

the role of AI is not to replace clinical judgment, but 
to augment it—serving as a decision-support tool 
that enhances accuracy, speed, and personalization 
of care. Compared to other domains of healthcare—
such as medical imaging, oncology, and risk predic-
tion—where AI and ML have been adopted since 
the early 2010s, the application of these technolo-
gies in antimicrobial resistance (AMR) has emerged 
more recently (Liu et al. 2024). This delayed inte-
gration is largely due to challenges related to frag-
mented data sources, limited availability of large 
standardized datasets, and the multifactorial nature 
of resistance development. However, since around 
2020, there has been a notable increase in AI-driven 
AMR research and deployment, supported by im-
proved data infrastructure and growing interdisci-
plinary collaboration.

The benefits and limitations of this approach were 
critically reviewed by Pérez de la Lastra et al. (2024). 
Among the key advantages, the authors highlight: 
early detection of resistance trends, optimization of 
empirical treatment, integration of large and diverse 
datasets (e.g., clinical, genomic, environmental), and 
potential to inform public health policy in real time. 
However, they also emphasize notable challenges and 
limitations: data fragmentation and poor interopera-
bility between systems, lack of standardization and 
validation of AI models across institutions, concerns 
regarding explainability of complex ML algorithms 
(often described as “black-box” models), and ethical 
and legal considerations related to patient data pri-
vacy and algorithmic bias. As they conclude, while 
the promise of AI in AMR is clear, its successful im-
plementation depends not only on multidisciplinary 
collaboration but on robust data governance and 

18

Figure 1. Traditional vs. AI-supported AMR management



SERBIAN SOCIETY FOR MICROBIOLOGY� Microbiology (Mikrobiologija) / Vol. 46 / No. 1

19

regulatory frameworks that ensure safe, transparent, 
and equitable deployment of these technologies in re-
al-world clinical settings. 

These observations underscore the need to re-
flect on how AI-supported approaches differ from 
traditional AMR management paradigms—not just 
technologically, but conceptually and operationally, 
Figure 1. Traditionally, AMR surveillance has relied 
on retrospective, population-level data aggregated 
into annual antibiograms. These summaries provide 
valuable insights into local resistance patterns but lack 
temporal granularity, personalization, and predictive 
capacity. Clinical decision-making in this paradigm 
is often reactive, based on past trends and expert in-
terpretation rather than individualized risk profiles 
or forward-looking models. Furthermore, traditional 
approaches struggle to keep pace with the dynamic 
and multifactorial nature of AMR, particularly in 
high-acuity hospital settings where timeliness and 
precision are critical.

In contrast, AI-enhanced systems, particularly 
those leveraging ML, represent a paradigm shift. These 
models can ingest vast, heterogeneous datasets—in-
cluding electronic health records, antimicrobial usage 
logs, resistance patterns, and microbiological data—
and use them to generate predictive, individualized 
insights. For example, recent studies have shown that 
ML models such as extreme gradient boosting (XG-
Boost) outperform traditional statistical baselines 
in forecasting hospital-level resistance prevalence 
(Corbin et al. 2022; Vihta et al. 2024). These models 
can identify subtle, non-linear relationships between 
variables and update predictions as new data becomes 
available, enabling a more adaptive and data-driven 
approach to antimicrobial stewardship.

From this perspective, AI does not simply en-
hance traditional tools—it transforms them, allowing 
healthcare systems to transition from descriptive to 
prescriptive analytics. Instead of asking “What was 
the resistance rate last year?”, clinicians and micro-
biologists can now ask “What is the likely resistance 
risk for this patient today—and how might that change 
next month?”

This evolution aligns with the broader shift to-
ward precision medicine and proactive infection 
control, where timely and context-specific decisions 
are paramount.

2.1. Application of artificial intelligence in 
microbiological diagnostics
According to numerous recent studies, AI/ML has 
demonstrated considerable potential in advancing mi-
crobiological diagnostics, supporting the discovery of 
novel antimicrobial agents, and refining the prediction 
of empirical antibiotic therapies. 

2.1.1 Application of Machine Learning for  
AMR Prediction
Conventional methods, though effective, are slow and 
labour-intensive, often delaying targeted treatment 
for 48–72 hours. This can lead to extended use of 
broad-spectrum antibiotics. Therefore, fast, accurate, 
and cost-effective diagnostics are essential to improve 
antimicrobial use and reduce selective pressure (Ben-
kova, Soukup and Marek, 2020).

The integration of ML techniques with MAL-
DI-TOF mass spectrometry data has emerged as a 
promising strategy for the rapid and accurate identifi-
cation of AMR. This approach enables direct detection 
of resistant phenotypes from clinical isolates, thereby 
significantly reducing diagnostic turnaround times. 
Algorithms such as random forest, support vector 
machines, and gradient boosting have shown robust 
performance in predicting resistance in clinically rel-
evant pathogens, including Escherichia coli, Klebsiella 
pneumoniae, and Staphylococcus aureus. (Weis et al. 
2022; Xu et al. 2025; López-Cortés et al. 2024). 

Whole-genome sequencing-based antimicrobial 
susceptibility testing (WGS-AST) facilitates rapid and 
reliable prediction of known resistance phenotypes 
while supporting robust surveillance through compre-
hensive genomic data. By analyzing WGS-AST data-
sets, machine learning algorithms can identify genetic 
determinants of resistance. For individual antibiotics, 
optimized ML models have demonstrated a 2% to 24% 
increase in sensitivity compared to traditional rules-
based approaches (Su, Satola, and Read, 2019). 

A study by Moradigaravand et al. (2018) showed 
that resistance in E. coli can be accurately predicted 
from whole-genome data without prior knowledge of 
specific mechanisms, underscoring the importance of 
integrating genomic and epidemiological information 
within WGS-AST frameworks. 

Similarly, a study conducted in China applied 
supervised learning to predict β-lactam resistance 
in Streptococcus pneumoniae using partial pbp2x and 
pbp2b gene sequences. Models trained on MIC-la-
beled and unlabeled data accurately predicted resis-
tance to cefuroxime and amoxicillin, with validation 
performed on engineered mutants and clinical iso-
lates, demonstrating the practical value of ML-based 
sequence analysis in AMR diagnostics (Zhang et al. 
2020). Expanding on these approaches, recent work 
on Mycobacterium tuberculosis employed deep convo-
lutional neural networks (CNNs) to predict resistance 
to 13 antibiotics using 18 genomic loci, achieving area 
under the curve (AUCs) between 80.1% and 99.5% and 
outperforming previous methods in sensitivity and 
specificity. Saliency analyses further revealed novel 
resistance-associated sites, improving model inter-
pretability and reinforcing the clinical utility of deep 
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learning in both resistance prediction and functional 
variant discovery (Green, et al. 2022). 

2.1.2 Application of Artificial Intelligence in 
Antimicrobial Drug Development 
AI has been integrated into various stages of drug de-
velopment (Gupta et al. 2021). For example, Roberts et 
al. (2022) employed AI-driven approaches to develop 
a synthetic lipopeptide effective against multidrug-re-
sistant Gram-negative pathogens, demonstrating the 
potential of AI to accelerate the development of ther-
apeutics targeting critical-priority bacteria. In addi-
tion to facilitating the identification of novel chemical 
scaffolds, machine learning approaches are expected 
to play a crucial role in predicting antimicrobial re-
sistance patterns and drug metabolism (Panjla et al. 
2024).

2.1.3 Application of Machine Learning in 
Antimicrobial Stewardship and Surveillance
Artificial intelligence systems contribute to improved 
antibiotic stewardship in hospital settings by tracking 
prescribing behaviours and identifying instances of 
overuse or inappropriate use. By analysing prescrip-
tion patterns and detecting anomalies, these systems 
enable targeted educational efforts or interventions 
aimed at optimizing antimicrobial prescribing practic-
es (Pinto-de-Sá et al. 2024). Kanjilal et al. (2020) devel-
oped a machine learning model trained on electronic 
health record data from a local hospital to estimate 
the likelihood of resistance to first- and second-line 
antibiotics in cases of uncomplicated urinary tract in-
fections (UTIs). Based on these predictions, the system 
recommended the narrowest-spectrum antibiotic to 
which the isolate was likely susceptible. Compared to 
clinician prescribing patterns, the algorithm reduced 
the use of second-line antibiotics by 67% and inap-
propriate antibiotic therapy—defined as prescribing 
an agent to which the pathogen is resistant—by 18%, 
underscoring its clinical potential to improve empiric 
treatment decisions.

A multi-site study from Stanford and Boston hos-
pitals proposes a novel ML framework that generates 
personalized antibiograms by leveraging electronic 
health records and microbiological data. Unlike tra-
ditional antibiograms that offer population-level re-
sistance data, this approach provides individualized 
antibiotic susceptibility profiles tailored to the patient’s 
clinical and microbiological context. The models were 
trained and evaluated on 8,122 infections from Stan-
ford Hospital and 15,803 urinary tract infections from 
hospitals in Boston. In the Stanford cohort, ML mod-
els achieved 85.9% coverage of infections (fraction of 
infections covered by treatment), comparable to cli-
nicians (84.3%, p = 0.11), while in the Boston cohort, 

coverage reached 90.4%, significantly outperforming 
clinicians (88.1%, p < 0.0001). The analysis focused 
on four broad-spectrum antibiotics—vancomycin, 
piperacillin-tazobactam, ciprofloxacin, and nitrofu-
rantoin—and demonstrated multiple opportunities for 
de-escalation without compromising coverage. For ex-
ample, 69% of vancomycin + piperacillin-tazobactam 
therapies could be narrowed to piperacillin-tazobact-
am alone, and 93% of ciprofloxacin prescriptions could 
be safely replaced with nitrofurantoin. These results 
highlight the potential of AI to support precision 
medicine in antimicrobial prescribing and enhance 
treatment outcomes (Corbin et al. 2022).

A notable example of an AI application in AMR 
management is also the study conducted in the United 
Kingdom by researchers who developed ML models 
to predict future antimicrobial resistance prevalence 
at the hospital level. Using comprehensive national 
data from 138 hospital groups (known as NHS Trusts) 
collected over a six-year period (2016–2022), the study 
focused on 22 clinically important pathogen–antibiot-
ic combinations, including resistant strains of E. coli, 
K. pneumoniae, and Pseudomonas aeruginosa. The 
models incorporated a wide range of predictors—such 
as historical AMR prevalence trends, hospital-level 
antibiotic consumption, and contextual variables like 
patient load and institutional size—demonstrating that 
these factors collectively enhance the predictive per-
formance of the system (Vihta et al. 2024). Among the 
six models tested, XGBoost consistently outperformed 
traditional forecasting methods such as previous val-
ue taken forwards (PVTF), difference taken forwards, 
and linear trend forecasting (LTF), with an average 
reduction in mean absolute error (MAE) of 1–3 per-
centage points. In specific cases, such as P. aeruginosa 
and ceftazidime, the MAE was reduced from 6% to 
4%, representing a 33% relative improvement. These 
performance gains were particularly pronounced in 
hospital settings with large year-to-year variations 
in resistance prevalence, where XGBoost showed su-
periority in nearly all pathogen–antibiotic combina-
tions. XGBoost is a state-of-the-art machine learning 
algorithm that builds a series of simple decision trees, 
where each new tree corrects the errors of the previous 
ones. It is especially effective in analysing complex, 
high-dimensional datasets, such as those encountered 
in microbiological surveillance systems. 

Yang et al. (2023) go beyond proof-of-concept to 
deliver an interpretable ML‑based clinical decision 
support system for predicting antibiotic resistance in 
complex urinary tract infections. Trained on a large 
cohort of complicated UTI cases and externally vali-
dated on an independent uncomplicated UTI cohort, 
the tool demonstrated high predictive accuracy—ex-
ceeding 85–90% for four commonly used antibiotics: 
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nitrofurantoin, co‑trimoxazole, ciprofloxacin, and 
levofloxacin. The authors provided detailed perfor-
mance metrics, including area under the receiver 
operating characteristic curve (AUROC) and area 
under the precision-recall curve (AUPRC) with 95% 
confidence intervals, confirming the clinical robust-
ness of the predictions. Importantly, the models were 
designed with interpretability in mind, using Shapley 
additive explanations SHAP values to highlight the 
most influential clinical variables for each prediction. 

This and similar scientific results underline the po-
tential of ML-based approaches to support data-driven 
AMR surveillance and guide antimicrobial steward-
ship efforts, highlighting the growing maturity of AI 
in clinical microbiology and its relevance for strength-
ening antibiotic stewardship programs.

3. Pioneering machine learning in empirical 
antimicrobial therapy in Serbia

Given that ML algorithms are highly data-dependent, 
a cornerstone of ML approach to AMR management is 
the establishment of a high-quality, structured dataset 
derived from existing health information infrastruc-
ture. Fortunately, many healthcare institutions in Ser-
bia already utilize electronic health records (EHRs), 
which offer a valuable foundation for advanced data 
collection and integration. When properly aggregated 
and standardized, EHR data that identifies relevant 
clinical parameters from microbiological laboratories, 
biochemical analyses, and patient histories can be used 
to train ML models. Once trained and optimized, 

models will be able to identify resistance patterns and 
predict the most effective empirical antibiotic ther-
apies. The process of building such models requires 
close collaboration between data scientists and mi-
crobiology experts. Domain knowledge is crucial not 
only for labelling and validating input variables but 
also for interpreting the model’s outputs and refining 
its predictions. 

In this context, an initiative has been launched by 
a team of researchers from multiple faculties — in-
cluding the Faculty of Mechanical and Civil Engineer-
ing in Kraljevo, University of Kragujevac, the Faculty 
of Medicine, University of Belgrade, the Faculty of 
Medical Sciences, University of Kragujevac, and the 
Faculty of Technical Sciences, University of Prišti-
na — with the aim of developing a comprehensive, 
scalable decision-support tool for empirical antimi-
crobial therapy, built on domestic data and tailored 
to the real needs of Serbia’s healthcare system. The 
project, Machine Learning Utilization for Data-Driv-
en Empirical Therapy and Antimicrobial Resistance 
Management, ML-ETAR, integrates expertise in mi-
crobiology, pharmacology, data science, and software 
engineering, and relies on retrospective data from six 
healthcare institutions across Serbia to train machine 
learning models that will inform more precise and 
context-aware antibiotic prescribing.

Figure 2. illustrates the logical flow of project 
– from data to clinical decision – and outlines the 
core components of the system we are developing to 
combat AMR through AI. The process begins with 
four key data sources: electronic health records, 

Figure 2. ML supported AMR management – project ML-ETAR
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biochemical laboratory data, microbiological lab-
oratory data, and pharmacy/prescription records. 
During the initial phase of the project, data were 
collected from six healthcare institutions across Ser-
bia, selected to represent a broad range of geograph-
ic and demographic diversity, a critical factor for 
building a representative dataset. These datasets are 
funnelled into a Data Integration Platform, which 
enables aggregation across institutions, standard-
ization of formats, and data cleaning. This step was 
particularly challenging due to the heterogeneity of 
information systems used in Serbian healthcare fa-
cilities. The integrated data feeds into the Machine 
Learning Core, where clustering and anomaly detec-
tion techniques are applied alongside the develop-
ment of predictive models capable of recommend-
ing optimal empirical antibiotic therapy. Crucially, 
the models are trained on Serbian health data, mak-
ing them context-sensitive and tailored to the reali-
ties of the local healthcare system.

The final output is a Clinical Decision Support 
Tool that provides empirically grounded recommen-
dations. Designed with a clinician-friendly interface, 
it integrates smoothly into existing clinical workflows 
without requiring significant changes from the med-
ical staff.

The overarching goal of this initiative is to enable 
more accurate and personalized empirical treatment, 
reduce the overuse of broad-spectrum antibiotics, and 
contribute to long-term AMR control through a scal-
able and intelligent digital solution.

4. Conclusion

The integration of AI in combating AMR offers a 
transformative opportunity to modernize surveil-
lance, improve patient outcomes, and optimize anti-
biotic use. The interdisciplinary initiative launched by 
researchers from several Serbian faculties presents a 
forward-thinking model for how data, domain exper-
tise, and intelligent algorithms can be brought togeth-
er to tackle AMR challenges. By building a scalable, 
context-sensitive decision-support system grounded 
in local healthcare realities, this project stands out as 
a pioneering effort with strong potential for long-term 
scientific, societal, and healthcare impact. Its method-
ological approach could serve as a blueprint for similar 
initiatives in other countries in the region facing high 
AMR burdens.

Acknowledgment: The authors acknowledge support 
of the Ministry of Science, Technological Development 
and Innovation of the Republic of Serbia, contract 
number [451-03-137/2025-03/200108 (Faculty of Me-
chanical and Civil Engineering in Kraljevo, University 

of Kragujevac)]. This research is in line with the stra-
tegic plan of the Republic of Serbia 2030, particularly 
in the section 2.2.2 Development of human resources, 
goal 3: Good health

References

Benkova, M., Soukup, O. and Marek, J. (2020) ‘Anti-
microbial susceptibility testing: currently used 
methods and devices and the near future in 
clinical practice’, Journal of Applied Microbiolo-
gy, 129(4), pp. 806–822. Available at: https://doi.
org/10.1111/jam.14704.

Cherkaoui, A. et al. (2020) ‘Impact of Total Laboratory 
Automation on Turnaround Times for Urine Cul-
tures and Screening Specimens for MRSA, ESBL, 
and VRE Carriage: Retrospective Comparison 
With Manual Workflow’, Frontiers in Cellular and 
Infection Microbiology, 10. Available at: https://
doi.org/10.3389/fcimb.2020.552122.

Corbin, C.K. et al. (2022) ‘Personalized antibiograms 
for machine learning driven antibiotic selection’, 
Communications Medicine, 2(1), p. 38. Available 
at: https://doi.org/10.1038/s43856-022-00094-8.

de la Lastra, J.M.P., Wardell, S.J.T., Pal, T., de la Fuen-
teNunez, C. & Pletzer, D., 2024. From Data to 
Decisions: Leveraging Artificial Intelligence and 
Machine Learning in Combating Antimicrobial 
Resistance – a Comprehensive Review. Journal 
of Medical Systems, 48(1), p.71. doi:10.1007/
s10916-024-02089-5

European Centre for Disease Prevention and Control. 
(2022). Assessing the health burden of infections 
with antibiotic-resistant bacteria in the EU/EEA, 
2016-2020. Stockholm: ECDC.

Green, A.G., Yoon, C.H., Chen, M.L. et al. (2022). A 
convolutional neural network highlights muta-
tions relevant to antimicrobial resistance in My-
cobacterium tuberculosis. Nat Commun 13, 3817 
https://doi.org/10.1038/s41467-022-31236-0

Gupta, R., Srivastava, D., Sahu, M., Tiwari, S., Ambasta, 
R.K. and Kumar, P. (2021). Artificial intelligence 
to deep learning: machine intelligence approach 
for drug discovery. Molecular Diversity, [online] 
25(3), pp.1–46. doi:https://doi.org/10.1007/
s11030-021-10217-3.

Jameela, T. et al. (2022) ‘Deep Learning and Trans-
fer Learning for Malaria Detection’, Computa-
tional Intelligence and Neuroscience. Edited by 
S. Roy, 2022, pp. 1–14. Available at: https://doi.
org/10.1155/2022/2221728. ‌

Kanjilal, S., Oberst, M., Boominathan, S., Zhou, H., 
Hooper, D. C., & Sontag, D. (2020). A decision 
algorithm to promote outpatient antimicro-
bial stewardship for uncomplicated urinary 



SERBIAN SOCIETY FOR MICROBIOLOGY� Microbiology (Mikrobiologija) / Vol. 46 / No. 1

23

tract infection. Science Translational Medicine, 
12(568), eaay5067. https://doi.org/10.1126/sci-
translmed.aay5067

The Lancet (2024). Antimicrobial resistance: an Agen-
da for All. Lancet, 403(10442). doi:https://doi.
org/10.1016/s0140-6736(24)01076-6.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep 
learning. Nature, 521(7553), 436–444. https://
doi.org/10.1038/nature14539

Liu, GY., Yu, D., Fan, MM. et al. Antimicrobial re-
sistance crisis: could artificial intelligence be the 
solution?. Military Med Res 11, 7 (2024). https://
doi.org/10.1186/s40779-024-00510-1

López-Cortés, X.A., Manríquez-Troncoso, J.M., 
Kandalaft-Letelier, J. and Cuadros-Orellana, S. 
(2024). Machine learning and matrix-assisted 
laser desorption/ionization time-of-flight mass 
spectra for antimicrobial resistance prediction: 
A systematic review of recent advancements and 
future development. Journal of Chromatography 
A, 1734, p.465262. doi:https://doi.org/10.1016/j.
chroma.2024.465262.

Marletta, S. et al. (2023) ‘Artificial intelligence-based 
tools applied to pathological diagnosis of mi-
crobiological diseases’, Pathology - Research and 
Practice, 243, p. 154362. Available at: https://doi.
org/10.1016/j.prp.2023.154362.

Mathison, B.A. et al. (2020) ‘Detection of Intestinal 
Protozoa in Trichrome-Stained Stool Specimens 
by Use of a Deep Convolutional Neural Network’, 
Journal of Clinical Microbiology. Edited by B.S. 
Pritt, 58(6). Available at: https://doi.org/10.1128/
jcm.02053-19.

Moradigaravand, D. et al. (2018) ‘Prediction of antibi-
otic resistance in Escherichia coli from large-scale 
pan-genome data’, PLOS Computational Biolo-
gy. Edited by A.E. Darling, 14(12), p. e1006258. 
Available at: https://doi.org/10.1371/journal.
pcbi.1006258.

Naghavi, M., Vollset, S.E., Ikuta, K.S., Swetschins-
ki, L.R., Gray, A.P., Wool, E.E., Robles Aguilar, 
G., Mestrovic, T., Smith, G., Han, C., Hsu, R.L., 
Chalek, J., Araki, D.T., Chung, E., Raggi, C., Ger-
shberg Hayoon, A., Davis Weaver, N., Lindstedt, 
P.A., Smith, A.E. and Altay, U. (2024). Global 
Burden of Bacterial Antimicrobial Resistance 
1990–2021: a Systematic Analysis with Fore-
casts to 2050. The Lancet, [online] 404(10459), 
pp.1199–1226. doi:https://doi.org/10.1016/
s0140-6736(24)01867-1.

Panjla, A. et al. (2024) ‘Applying Machine Learning for 
Antibiotic Development and Prediction of Mi-
crobial Resistance’, Chemistry – An Asian Journal 
[Preprint]. Available at: https://doi.org/10.1002/
asia.202400102.

Prestinaci, F., Pezzotti, P., & Pantosti, A. (2015). Anti-
microbial resistance: a Global Multifaceted Phe-
nomenon. Pathogens and Global Health, 109(7), 
309–318. https://doi.org/10.1179/204777321
5y.0000000030

Russell SJ, Norvig P. Artificial Intelligence: A Modern 
Approach. 4th ed. Pearson; 2021.

Republic of Serbia Goverment (no date) Artificial In-
telligence Development Strategy in the Republic of 
Serbia for the period from 2025 to 2030. Available 
at: https://nitra.gov.rs/images/vesti/2025/2025-
01-10-link/Strategija%20razvoja%20vestacke%20
inteligencije%202025-2030.pdf.

Roberts KD, Zhu Y, Azad MAK, Han ML, Wang J, 
Wang L, et al. A synthetic lipopeptide targeting 
top-priority multidrug-resistant Gram-negative 
pathogens. Nat Commun. 2022;13(1):1625

Smith, K.P. and Kirby, J.E. (2020) ‘Image analysis 
and artificial intelligence in infectious disease 
diagnostics’, Clinical Microbiology and Infection, 
26(10), pp. 1318–1323. Available at: https://doi.
org/10.1016/j.cmi.2020.03.012.

Song, Y. et al. (2017) ‘Segmentation, Splitting, and 
Classification of Overlapping Bacteria in Micro-
scope Images for Automatic Bacterial Vaginosis 
Diagnosis’, IEEE Journal of Biomedical and Health 
Informatics, 21(4), pp. 1095–1104. Available at: 
https://doi.org/10.1109/jbhi.2016.2594239.

Su, M., Satola, S.W. and Read, T.D. (2019) ‘Ge-
nome-Based Prediction of Bacterial Antibiotic 
Resistance’, Journal of Clinical Microbiology. Ed-
ited by A.J. McAdam, 57(3). Available at: https://
doi.org/10.1128/jcm.01405-18.

Vihta, K.-D. et al. (2024) ‘Predicting future hospital 
antimicrobial resistance prevalence using ma-
chine learning’, Communications Medicine, 4(1), 
p. 197. Available at: https://doi.org/10.1038/
s43856-024-00606-8.

Weis, C., Cuénod, A., Rieck, B., Dubuis, O., Graf, S., 
Lang, C., Oberle, M., Brackmann, M., Søgaard, 
K.K., Osthoff, M., Borgwardt, K. and Egli, A. 
(2022). Direct antimicrobial resistance prediction 
from clinical MALDI-TOF mass spectra using 
machine learning. Nature Medicine. doi:https://
doi.org/10.1038/s41591-021-01619-9.

World Health Organization (2023). Antimicrobial Re-
sistance. [on line] World Health Organization. 
Available at: https://www.who.int/news-room/
fact-sheets/detail/antimicrobial-resistance.

Xu, X., Wang, Z., Lu, E., Lin, T., Du, H., Li, Z. and Ma, 
J. (2025). Rapid detection of carbapenem-resis-
tant Escherichia coli and carbapenem-resistant 
Klebsiella pneumoniae in positive blood cultures 
via MALDI-TOF MS and tree-based machine 



Microbiology (Mikrobiologija) / Vol. 46 / No. 1� SERBIAN SOCIETY FOR MICROBIOLOGY

24

learning models. BMC Microbiology, 25(1). 
doi:https://doi.org/10.1186/s12866-025-03755-5.

Yang, J., Eyre, D. W., Lu, L., & Clifton, D. A. (2023). 
Interpretable machine learning-based decision 
support for prediction of antibiotic resistance for 
complicated urinary tract infections. Antimicro-
bials and Resistance, 1(1), Article 14. https://doi.
org/10.1038/s44259-023-00015-2

Zhang, C., Ju, Y., Tang, N., Li, Y., Zhang, G., Song, Y., 
Fang, H., Yang, L., & Feng, J. (2020). Systematic 
analysis of supervised machine learning as an ef-
fective approach to predicate β-lactam resistance 
phenotype in Streptococcus pneumoniae. Brief-
ings in Bioinformatics, 21(4), 1347–1355. https://
doi.org/10.1093/bib/bbz056


