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Abstract: Antimicrobial resistance poses a signifi-
cant threat to global health, demanding innovative
and scalable responses. This article examines the in-
tegration of artificial intelligence/machine learning
technologies into the surveillance and clinical man-
agement of antimicrobial resistance, highlighting
recent advancements and their potential to trans-
form the field. By aligning these technologies with
national strategies and clinical practice, particular-
ly in settings such as Serbia, the paper underscores
the importance of interdisciplinary collaboration
in developing effective decision-support tool for
empirical antibiotic therapy tailored to real-world
healthcare environments revived in the project idea,
Machine Learning Utilization for Data-Driven Em-
pirical Therapy and Antimicrobial Resistance Man-
agement, developed by a group of researchers from
four Serbian faculties.
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1. Introduction

Antimicrobial resistance (AMR) is a natural evolution-
ary mechanism by which microorganisms, including
bacteria, viruses, fungi, and parasites, develop the
capacity to resist the action of antimicrobial drugs.
Nevertheless, the widespread misuse and overuse of
antibiotics across human medicine, veterinary prac-
tices, agriculture, and environmental settings have
greatly intensified the pace at which AMR emerges
and spreads (World Health Organization, 2023). An-
timicrobial resistance is no longer a distant or hypo-
thetical concern; it is already having a significant effect
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on public health (The Lancet, 2024). In 2021, there
were 4.71 million deaths associated with bacterial
AMR globally, including 1.14 million deaths directly
attributable to bacterial AMR (Naghavi et al. 2024).
According to European Centre for Disease Prevention
and Control (ECDC) data, the number of deaths at-
tributable to bacterial AMR in the European Union/
European Economic Area (EU/EEA) in 2020 was over
35,000 (European Centre for Disease Prevention and
Control, 2022). Projections suggest that, if current
trends continue, AMR could lead to 1.91 million direct
deaths and 8.22 million associated deaths globally by
2050, underscoring the urgent need for coordinated
global action (Naghavi et al. 2024). Antibiotic resis-
tance contributes to a significant rise in healthcare
costs due to the need for more expensive second- or
third-line antimicrobial agents, extended durations of
hospitalization, use of advanced medical equipment,
and implementation of strict infection control and
isolation protocols (Prestinaci et al. 2015).

The growing complexity of AMR challenges con-
ventional epidemiological and clinical tools, exceeding
the capacity of standard analytical methods. As a re-
sponse, in recent years, there has been increasing glob-
al momentum to apply advanced information tech-
nologies, particularly artificial intelligence (AI) and
machine learning (ML), as a scalable and data-driven
solution to the evolving threat of antimicrobial re-
sistance (de la Lastra et al. 2024). By leveraging this
potential, ML-based solutions are bridging the gap
between raw clinical data and timely, evidence-based
antimicrobial decision-making, improving both mi-
crobiological analysis and empirical antibiotic pre-
scribing, and in general, enabling healthcare systems
to move from reactive to proactive, predictive, and
personalized responses.
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Serbia’s national strategy for the development of
artificial intelligence (Republic of Serbia Goverment,
2025) explicitly recognizes the need to apply Al in
healthcare, particularly to improve the quality of care
and the efficiency of public health interventions. This
is the foundation of the ML-ETAR project idea pro-
posed by the team of researchers from the Faculty of
Mechanical and Civil Engineering in Kraljevo, Uni-
versity of Kragujevac, the Faculty of Medicine, Uni-
versity of Belgrade, the Faculty of Medical Sciences,
University of Kragujevac, and the Faculty of Tech-
nical Sciences, University of Pristina, which aims to
develop a robust and context-sensitive antimicrobial
decision-support tool using retrospective data from
healthcare institutions in Serbia. By combining lo-
cal clinical knowledge with advanced computational
techniques, the project exemplifies how Al can be
responsibly and effectively integrated into national
AMR strategies.

2. Current artificial intelligence applications
and future prospects in combating AMR

Al as defined by Stuart Russell and Peter Norvig, lead-
ing theorists in artificial intelligence, is “the study of
agents that receive percepts from the environment and
perform actions” (Russell & Norvig, 2021). In practi-
cal terms, Al refers to systems capable of simulating
aspects of human intelligence—such as learning, rea-
soning, and decision-making, in order to solve com-
plex problems. A core subfield of AI - ML focuses on
designing algorithms that can learn from historical
data and improve their performance over time without
being explicitly programmed for each scenario.

ML algorithms are particularly suited to domains
where large volumes of complex and heterogeneous
data are generated. Microbiology, in particular, pro-
duces extensive datasets through routine laboratory
testing, microbial culturing, antibiotic susceptibili-
ty profiling, molecular diagnostics, and sequencing
techniques—all of which contain rich, structured and
unstructured information suitable for computational
analysis. As noted by LeCun, Bengio, and Hinton—
founding figures of modern deep learning, machine
learning enables systems to “automatically learn com-
plex representations of data and perform tasks with
human-level accuracy or beyond” (LeCun, Bengio &
Hinton, 2015). This capability has opened the door to
transformative applications in healthcare, including
microbiology, where such systems can detect subtle
patterns across large, heterogeneous datasets and sup-
port high-stakes clinical decisions.

In healthcare, ML has already been applied to
diagnostic classification, risk prediction, treatment
selection, and outbreak surveillance. Importantly,
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the role of Al is not to replace clinical judgment, but
to augment it—serving as a decision-support tool
that enhances accuracy, speed, and personalization
of care. Compared to other domains of healthcare—
such as medical imaging, oncology, and risk predic-
tion—where AI and ML have been adopted since
the early 2010s, the application of these technolo-
gies in antimicrobial resistance (AMR) has emerged
more recently (Liu et al. 2024). This delayed inte-
gration is largely due to challenges related to frag-
mented data sources, limited availability of large
standardized datasets, and the multifactorial nature
of resistance development. However, since around
2020, there has been a notable increase in Al-driven
AMR research and deployment, supported by im-
proved data infrastructure and growing interdisci-
plinary collaboration.

The benefits and limitations of this approach were
critically reviewed by Pérez de la Lastra et al. (2024).
Among the key advantages, the authors highlight:
early detection of resistance trends, optimization of
empirical treatment, integration of large and diverse
datasets (e.g., clinical, genomic, environmental), and
potential to inform public health policy in real time.
However, they also emphasize notable challenges and
limitations: data fragmentation and poor interopera-
bility between systems, lack of standardization and
validation of AT models across institutions, concerns
regarding explainability of complex ML algorithms
(often described as “black-box” models), and ethical
and legal considerations related to patient data pri-
vacy and algorithmic bias. As they conclude, while
the promise of Al in AMR is clear, its successful im-
plementation depends not only on multidisciplinary
collaboration but on robust data governance and
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regulatory frameworks that ensure safe, transparent,
and equitable deployment of these technologies in re-
al-world clinical settings.

These observations underscore the need to re-
flect on how Al-supported approaches differ from
traditional AMR management paradigms—not just
technologically, but conceptually and operationally,
Figure 1. Traditionally, AMR surveillance has relied
on retrospective, population-level data aggregated
into annual antibiograms. These summaries provide
valuable insights into local resistance patterns but lack
temporal granularity, personalization, and predictive
capacity. Clinical decision-making in this paradigm
is often reactive, based on past trends and expert in-
terpretation rather than individualized risk profiles
or forward-looking models. Furthermore, traditional
approaches struggle to keep pace with the dynamic
and multifactorial nature of AMR, particularly in
high-acuity hospital settings where timeliness and
precision are critical.

In contrast, Al-enhanced systems, particularly
those leveraging ML, represent a paradigm shift. These
models can ingest vast, heterogeneous datasets—in-
cluding electronic health records, antimicrobial usage
logs, resistance patterns, and microbiological data—
and use them to generate predictive, individualized
insights. For example, recent studies have shown that
ML models such as extreme gradient boosting (XG-
Boost) outperform traditional statistical baselines
in forecasting hospital-level resistance prevalence
(Corbin et al. 2022; Vihta et al. 2024). These models
can identify subtle, non-linear relationships between
variables and update predictions as new data becomes
available, enabling a more adaptive and data-driven
approach to antimicrobial stewardship.

From this perspective, Al does not simply en-
hance traditional tools—it transforms them, allowing
healthcare systems to transition from descriptive to
prescriptive analytics. Instead of asking “What was
the resistance rate last year?”, clinicians and micro-
biologists can now ask “What is the likely resistance
risk for this patient today—and how might that change
next month?”

This evolution aligns with the broader shift to-
ward precision medicine and proactive infection
control, where timely and context-specific decisions
are paramount.

2.1. Application of artificial intelligence in
microbiological diagnostics

According to numerous recent studies, AI/ML has
demonstrated considerable potential in advancing mi-
crobiological diagnostics, supporting the discovery of
novel antimicrobial agents, and refining the prediction
of empirical antibiotic therapies.

2.1.1 Application of Machine Learning for
AMR Prediction

Conventional methods, though effective, are slow and
labour-intensive, often delaying targeted treatment
for 48-72 hours. This can lead to extended use of
broad-spectrum antibiotics. Therefore, fast, accurate,
and cost-effective diagnostics are essential to improve
antimicrobial use and reduce selective pressure (Ben-
kova, Soukup and Marek, 2020).

The integration of ML techniques with MAL-
DI-TOF mass spectrometry data has emerged as a
promising strategy for the rapid and accurate identifi-
cation of AMR. This approach enables direct detection
of resistant phenotypes from clinical isolates, thereby
significantly reducing diagnostic turnaround times.
Algorithms such as random forest, support vector
machines, and gradient boosting have shown robust
performance in predicting resistance in clinically rel-
evant pathogens, including Escherichia coli, Klebsiella
pneumoniae, and Staphylococcus aureus. (Weis et al.
2022; Xu et al. 2025; Lopez-Cortés et al. 2024).

Whole-genome sequencing-based antimicrobial
susceptibility testing (WGS-AST) facilitates rapid and
reliable prediction of known resistance phenotypes
while supporting robust surveillance through compre-
hensive genomic data. By analyzing WGS-AST data-
sets, machine learning algorithms can identify genetic
determinants of resistance. For individual antibiotics,
optimized ML models have demonstrated a 2% to 24%
increase in sensitivity compared to traditional rules-
based approaches (Su, Satola, and Read, 2019).

A study by Moradigaravand et al. (2018) showed
that resistance in E. coli can be accurately predicted
from whole-genome data without prior knowledge of
specific mechanisms, underscoring the importance of
integrating genomic and epidemiological information
within WGS-AST frameworks.

Similarly, a study conducted in China applied
supervised learning to predict B-lactam resistance
in Streptococcus pneumoniae using partial pbp2x and
pbp2b gene sequences. Models trained on MIC-la-
beled and unlabeled data accurately predicted resis-
tance to cefuroxime and amoxicillin, with validation
performed on engineered mutants and clinical iso-
lates, demonstrating the practical value of ML-based
sequence analysis in AMR diagnostics (Zhang et al.
2020). Expanding on these approaches, recent work
on Mycobacterium tuberculosis employed deep convo-
lutional neural networks (CNNs) to predict resistance
to 13 antibiotics using 18 genomic loci, achieving area
under the curve (AUCs) between 80.1% and 99.5% and
outperforming previous methods in sensitivity and
specificity. Saliency analyses further revealed novel
resistance-associated sites, improving model inter-
pretability and reinforcing the clinical utility of deep
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learning in both resistance prediction and functional
variant discovery (Green, et al. 2022).

2.1.2 Application of Artificial Intelligence in
Antimicrobial Drug Development

AT has been integrated into various stages of drug de-
velopment (Gupta et al. 2021). For example, Roberts et
al. (2022) employed AI-driven approaches to develop
a synthetic lipopeptide effective against multidrug-re-
sistant Gram-negative pathogens, demonstrating the
potential of Al to accelerate the development of ther-
apeutics targeting critical-priority bacteria. In addi-
tion to facilitating the identification of novel chemical
scaffolds, machine learning approaches are expected
to play a crucial role in predicting antimicrobial re-
sistance patterns and drug metabolism (Panjla et al.
2024).

2.1.3 Application of Machine Learning in
Antimicrobial Stewardship and Surveillance

Artificial intelligence systems contribute to improved
antibiotic stewardship in hospital settings by tracking
prescribing behaviours and identifying instances of
overuse or inappropriate use. By analysing prescrip-
tion patterns and detecting anomalies, these systems
enable targeted educational efforts or interventions
aimed at optimizing antimicrobial prescribing practic-
es (Pinto-de-Sa et al. 2024). Kanjilal et al. (2020) devel-
oped a machine learning model trained on electronic
health record data from a local hospital to estimate
the likelihood of resistance to first- and second-line
antibiotics in cases of uncomplicated urinary tract in-
fections (UTIs). Based on these predictions, the system
recommended the narrowest-spectrum antibiotic to
which the isolate was likely susceptible. Compared to
clinician prescribing patterns, the algorithm reduced
the use of second-line antibiotics by 67% and inap-
propriate antibiotic therapy—defined as prescribing
an agent to which the pathogen is resistant—by 18%,
underscoring its clinical potential to improve empiric
treatment decisions.

A multi-site study from Stanford and Boston hos-
pitals proposes a novel ML framework that generates
personalized antibiograms by leveraging electronic
health records and microbiological data. Unlike tra-
ditional antibiograms that offer population-level re-
sistance data, this approach provides individualized
antibiotic susceptibility profiles tailored to the patient’s
clinical and microbiological context. The models were
trained and evaluated on 8,122 infections from Stan-
ford Hospital and 15,803 urinary tract infections from
hospitals in Boston. In the Stanford cohort, ML mod-
els achieved 85.9% coverage of infections (fraction of
infections covered by treatment), comparable to cli-
nicians (84.3%, p = 0.11), while in the Boston cohort,
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coverage reached 90.4%, significantly outperforming
clinicians (88.1%, p < 0.0001). The analysis focused
on four broad-spectrum antibiotics—vancomycin,
piperacillin-tazobactam, ciprofloxacin, and nitrofu-
rantoin—and demonstrated multiple opportunities for
de-escalation without compromising coverage. For ex-
ample, 69% of vancomycin + piperacillin-tazobactam
therapies could be narrowed to piperacillin-tazobact-
am alone, and 93% of ciprofloxacin prescriptions could
be safely replaced with nitrofurantoin. These results
highlight the potential of AI to support precision
medicine in antimicrobial prescribing and enhance
treatment outcomes (Corbin et al. 2022).

A notable example of an Al application in AMR
management is also the study conducted in the United
Kingdom by researchers who developed ML models
to predict future antimicrobial resistance prevalence
at the hospital level. Using comprehensive national
data from 138 hospital groups (known as NHS Trusts)
collected over a six-year period (2016-2022), the study
focused on 22 clinically important pathogen-antibiot-
ic combinations, including resistant strains of E. coli,
K. pneumoniae, and Pseudomonas aeruginosa. The
models incorporated a wide range of predictors—such
as historical AMR prevalence trends, hospital-level
antibiotic consumption, and contextual variables like
patient load and institutional size—demonstrating that
these factors collectively enhance the predictive per-
formance of the system (Vihta ef al. 2024). Among the
six models tested, XGBoost consistently outperformed
traditional forecasting methods such as previous val-
ue taken forwards (PVTF), difference taken forwards,
and linear trend forecasting (LTF), with an average
reduction in mean absolute error (MAE) of 1-3 per-
centage points. In specific cases, such as P. aeruginosa
and ceftazidime, the MAE was reduced from 6% to
4%, representing a 33% relative improvement. These
performance gains were particularly pronounced in
hospital settings with large year-to-year variations
in resistance prevalence, where XGBoost showed su-
periority in nearly all pathogen-antibiotic combina-
tions. XGBoost is a state-of-the-art machine learning
algorithm that builds a series of simple decision trees,
where each new tree corrects the errors of the previous
ones. It is especially effective in analysing complex,
high-dimensional datasets, such as those encountered
in microbiological surveillance systems.

Yang et al. (2023) go beyond proof-of-concept to
deliver an interpretable ML-based clinical decision
support system for predicting antibiotic resistance in
complex urinary tract infections. Trained on a large
cohort of complicated UTI cases and externally vali-
dated on an independent uncomplicated UTI cohort,
the tool demonstrated high predictive accuracy—ex-
ceeding 85-90% for four commonly used antibiotics:
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nitrofurantoin, co-trimoxazole, ciprofloxacin, and
levofloxacin. The authors provided detailed perfor-
mance metrics, including area under the receiver
operating characteristic curve (AUROC) and area
under the precision-recall curve (AUPRC) with 95%
confidence intervals, confirming the clinical robust-
ness of the predictions. Importantly, the models were
designed with interpretability in mind, using Shapley
additive explanations SHAP values to highlight the
most influential clinical variables for each prediction.

This and similar scientific results underline the po-
tential of ML-based approaches to support data-driven
AMR surveillance and guide antimicrobial steward-
ship efforts, highlighting the growing maturity of Al
in clinical microbiology and its relevance for strength-
ening antibiotic stewardship programs.

3. Pioneering machine learning in empirical
antimicrobial therapy in Serbia

Given that ML algorithms are highly data-dependent,
a cornerstone of ML approach to AMR management is
the establishment of a high-quality, structured dataset
derived from existing health information infrastruc-
ture. Fortunately, many healthcare institutions in Ser-
bia already utilize electronic health records (EHRs),
which offer a valuable foundation for advanced data
collection and integration. When properly aggregated
and standardized, EHR data that identifies relevant
clinical parameters from microbiological laboratories,
biochemical analyses, and patient histories can be used
to train ML models. Once trained and optimized,

Data Sources
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@ Microbiological laboratory
data

< institutions

Data Integration Platform
2=,
<= Pharmacy records mﬁ_ Data aggregation from multiple

models will be able to identify resistance patterns and
predict the most effective empirical antibiotic ther-
apies. The process of building such models requires
close collaboration between data scientists and mi-
crobiology experts. Domain knowledge is crucial not
only for labelling and validating input variables but
also for interpreting the model’s outputs and refining
its predictions.

In this context, an initiative has been launched by
a team of researchers from multiple faculties — in-
cluding the Faculty of Mechanical and Civil Engineer-
ing in Kraljevo, University of Kragujevac, the Faculty
of Medicine, University of Belgrade, the Faculty of
Medical Sciences, University of Kragujevac, and the
Faculty of Technical Sciences, University of Pristi-
na — with the aim of developing a comprehensive,
scalable decision-support tool for empirical antimi-
crobial therapy, built on domestic data and tailored
to the real needs of Serbia’s healthcare system. The
project, Machine Learning Utilization for Data-Driv-
en Empirical Therapy and Antimicrobial Resistance
Management, ML-ETAR, integrates expertise in mi-
crobiology, pharmacology, data science, and software
engineering, and relies on retrospective data from six
healthcare institutions across Serbia to train machine
learning models that will inform more precise and
context-aware antibiotic prescribing.

Figure 2. illustrates the logical flow of project
- from data to clinical decision - and outlines the
core components of the system we are developing to
combat AMR through AI. The process begins with
four key data sources: electronic health records,
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Figure 2. ML supported AMR management — project ML-ETAR
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biochemical laboratory data, microbiological lab-
oratory data, and pharmacy/prescription records.
During the initial phase of the project, data were
collected from six healthcare institutions across Ser-
bia, selected to represent a broad range of geograph-
ic and demographic diversity, a critical factor for
building a representative dataset. These datasets are
funnelled into a Data Integration Platform, which
enables aggregation across institutions, standard-
ization of formats, and data cleaning. This step was
particularly challenging due to the heterogeneity of
information systems used in Serbian healthcare fa-
cilities. The integrated data feeds into the Machine
Learning Core, where clustering and anomaly detec-
tion techniques are applied alongside the develop-
ment of predictive models capable of recommend-
ing optimal empirical antibiotic therapy. Crucially,
the models are trained on Serbian health data, mak-
ing them context-sensitive and tailored to the reali-
ties of the local healthcare system.

The final output is a Clinical Decision Support
Tool that provides empirically grounded recommen-
dations. Designed with a clinician-friendly interface,
it integrates smoothly into existing clinical workflows
without requiring significant changes from the med-
ical staff.

The overarching goal of this initiative is to enable
more accurate and personalized empirical treatment,
reduce the overuse of broad-spectrum antibiotics, and
contribute to long-term AMR control through a scal-
able and intelligent digital solution.

4. Conclusion

The integration of Al in combating AMR offers a
transformative opportunity to modernize surveil-
lance, improve patient outcomes, and optimize anti-
biotic use. The interdisciplinary initiative launched by
researchers from several Serbian faculties presents a
forward-thinking model for how data, domain exper-
tise, and intelligent algorithms can be brought togeth-
er to tackle AMR challenges. By building a scalable,
context-sensitive decision-support system grounded
in local healthcare realities, this project stands out as
a pioneering effort with strong potential for long-term
scientific, societal, and healthcare impact. Its method-
ological approach could serve as a blueprint for similar
initiatives in other countries in the region facing high
AMR burdens.
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